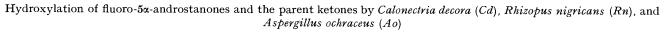
# Microbiological Hydroxylation. Part 23.<sup>1</sup> Hydroxylations of Fluoro-5 $\alpha$ androstanones by the Fungi *Calonectria decora*, *Rhizopus nigricans*, and *Aspergillus ochraceus*

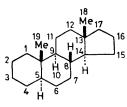
By T. Geoffrey C. Bird, Peter M. Fredericks, Sir Ewart R. H. Jones, and G. Denis Meakins,\* Dyson Perrins Laboratory, Oxford University, South Parks Road, Oxford OX1 3QY

A series of monofluoro- and gem-difluoro- $5\alpha$ -androstanones and the parent ketones were incubated, under standard conditions, with the fungi named in the title. The results may be rationalised by comparing the positions of the fluorine atoms in the substrates with those of the favoured hydroxylation sites in the parent ketones. With few exceptions hydroxylation does not occur at, or adjacent to, the carbon to which a fluorine substituent is attached even though one of these centres is a favoured site (in the parent ketone). In such cases hydroxylation is usually diverted to an alternative position. Where the favoured site is more distant from the fluorine substituent(s) the behaviour of a fluoro-ketone resembles that of its parent. Hydroxylation of several fluoro-ketones by Aspergillus ochraceus gives the  $11\alpha$ -hydroxy-derivatives cleanly and in yields which are satisfactory for preparative work.

In previous work<sup>2</sup> comparisons were made between the hydroxylations of 5*a*-androstane monoketones and those of related substrates having halogeno-substituents at positions (3 and 17) remote from the keto-groups; on the basis of their known activities the fungi selected for study were Calonectria decora<sup>3</sup> and Rhizopus nigricans<sup>4</sup> (which are influenced by directing effects) and Aspergillus ochraceus<sup>5</sup> (which is usually site-specific). The emergence of the fluoro-ketones as the most interesting substrates prompted the present work involving a range of monofluoro- and gem-difluoro-5a-androstanones prepared by the methods described recently.<sup>6</sup> Since the object was to elucidate the effect of the fluoro-substituents on the hydroxylation processes rather than to optimise the yield of any particular product it was essential to use standard conditions for the incubations. Preliminary experiments led to a general procedure in which most of the fluoro-ketones were converted into mono- or di-hydroxy-derivatives but did not undergo degradation to smaller water-soluble products. However, it transpired that 3-, 16-, and 17-oxo-5a-androstanes (the appropriate reference compounds) had not been incubated previously under precisely these conditions, and a re-examination of the parent ketones was therefore required.

#### RESULTS AND DISCUSSION


Table 1 summarises the results obtained in the hydroxylations of the fluoro-ketones and the reference ketones by C. decora (Cd), R. nigricans (Rn), and A. ochraceus (Ao). Table 2 lists the n.m.r. spectra of the steroids involved here for which spectrometric data have not appeared in previous publications; the arabic serial number sequence discussed earlier <sup>3a</sup> is used in this Table, which contains steroids nos. 1028—1080. The structures of new compounds follow, as usual,<sup>3a,b</sup> from a combination of spectroscopic and chemical methods. With three 16oxygenated-17,17-difluoro-compounds (nos. 1043, 1067, and 1075) there is poor agreement between the observed and calculated positions of the 18-H signals. The proposed structures are supported, however, by the large coupling of the 16-H signal in the hydroxy-diketone (no. 1043) and by a comparison of the <sup>19</sup>F signals of the other compounds with those of 17,17-difluoro-androstanes lacking 16-substituents.<sup>6</sup> Jones oxidation of the  $11\alpha,16\beta$ -dihydroxy-3-ketone (no. 1067) gave the 16\betahydroxy-3,11-diketone (no. 1043); apparently the 17fluoro-substituents markedly reduce the tendency of a neighbouring hydroxy-group to form a chromate ester. The properties, other than the n.m.r. characteristics, of the products which were fully characterised are collected in Table 3. Since the microbiological and chemical operations of the present work are routine applications of techniques described in earlier parts details are not given here.<sup>†</sup>


Inspection of Table 1 shows that the introduction of fluorine substituents has marked effects on the positions and rates at which a parent ketone is hydroxylated by Cd, Rn, and Ao. While no comprehensive explanation of these effects can be given, several trends emerge from an analysis based on a comparison of the positions of the fluorine atoms in the substrates with those of the favoured hydroxylation sites in the parent ketones. To simplify discussion the latter sites (whose number and positions in the steroid nucleus vary with the structure of the parent ketone and the nature of the microorganism) <sup>3-5</sup> are termed the standard sites, and the fluoro-ketone substrates are represented as  $F-C_x-C_y\cdots C_z\cdots$ . The two basically different situations which arise may be considered as follows.

(i) The standard site (or one of the standard sites) corresponds to  $C_x$  or  $C_y$ . An overall inspection of the results shows that, with few exceptions, hydroxylation does not occur at  $C_x$  or  $C_y$ . Thus, the tendency of fluorine to inhibit substitution at, or adjacent to, the carbon to which it is attached outweighs the directing effect of the substrate's keto-group <sup>3,4</sup> or the site-specificity of the micro-organism.<sup>5</sup> There is one instance in which the

 $<sup>\</sup>dagger$  The experimental work is recorded in Supplementary Publication No. SUP 22690 (12 pp.). For details of Supplementary Publications see Notice to Authors, No. 7 in *J.C.S. Perkin I*, 1979, Index issue.

## TABLE 1





#### 5α - Androstane

The substrates, all derivatives of  $5\alpha$ -androstane, are indicated by abbreviated names, e.g. 3-CO-16,16-F<sub>2</sub> represents 16,16-diffuoro- $5\alpha$ -androstan-3-one. In the 'products ' columns those oxygen functions introduced during the incubation are in **bold** type; n.i. indicates that no product was isolated or that the complex mixture of products was not investigated. The substrates were introduced as solutions in ethanol, and the incubations were carried out for the times (in days) specified. The yields are calculated after making allowance for recovered starting material.

| 0                          | _                                                                        |            |                                                                          |                                                                                   |
|----------------------------|--------------------------------------------------------------------------|------------|--------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
|                            | Fungus                                                                   | Substrate  |                                                                          |                                                                                   |
| Substrate                  | (Time in days)                                                           | recovered  | Main product(s)                                                          | Other product(s)                                                                  |
|                            | $\begin{bmatrix} Cd & (4) \end{bmatrix}$                                 | 15%        | $3\beta$ , <b>12</b> $\beta$ , <b>15</b> $\alpha$ -(OH) <sub>3</sub> 30% | <b>12</b> β, <b>15</b> α-(OH) <sub>2</sub> 17%                                    |
| 3-CO                       | $\left\{ \operatorname{Rn} (4) \right\}$                                 | 31         | <b>11</b> $\alpha$ , <b>16</b> $\beta$ -(OH) <sub>2</sub> 24             | 3β, <b>11</b> α, <b>16</b> β-(OH) <sub>3</sub> 11                                 |
|                            | (Ao (6)                                                                  | 90         | $6\beta, 11\alpha$ - (OH) <sub>2</sub> 84                                |                                                                                   |
| 3-CO-7,7-F,                | $\begin{cases} Cd & (4) \\ Cd & (4) \end{cases}$                         | 8          | $3\beta$ , <b>12</b> $\beta$ , <b>15</b> $\alpha$ -(OH) <sub>3</sub> 35  | <b>12</b> β, <b>15</b> α-(OH) <sub>2</sub> 17                                     |
| , <b>2</b>                 | l Rn (4)                                                                 | 0          |                                                                          |                                                                                   |
| 3-CO-12,12-F <sub>2</sub>  | $\begin{cases} Cd & (4) \\ Da & (4) \end{cases}$                         | 23         | $3\beta$ , $7\beta$ , $15\alpha$ -(OH) <sub>3</sub> 30                   |                                                                                   |
| , <b>1</b>                 | $\operatorname{Rn}(4)$                                                   | 21         | $1\beta, 16\beta - (OH)_2$ 21                                            | $4\alpha$ , <b>16</b> $\beta$ -(OH) <sub>2</sub> 5                                |
| 3-CO-16,16-F <sub>2</sub>  | $\begin{cases} Cd & (4) \\ Ao & (6) \end{cases}$                         | 30<br>71   | $7\beta$ , <b>12</b> $\beta$ -(OH) <sub>2</sub> 16                       | $3\beta, 7\beta, 12\beta - (OH)_3$ 11                                             |
| -                          | · · · · · · · · · · · · · · · · · · ·                                    | 71         | $11\alpha$ - OH 42                                                       | <b>6</b> $\beta$ , <b>11</b> $\alpha$ -(OH) <sub>2</sub> 34                       |
| 3-CO-17α-F *               | $\begin{cases} Cd & (4) \\ Rn & (4) \end{cases}$                         | $42 \\ 95$ | <b>12</b> $\beta$ , <b>15</b> $\alpha$ -(OH) <sub>2</sub> 17             |                                                                                   |
| 3-00-174-1                 |                                                                          | 95<br>34   | n.i.<br><b>11</b> α- ΟΗ 46                                               |                                                                                   |
| 3-CO-Δ <sup>16</sup> -17-F | (Ao (4)<br>Cd (4)                                                        | 34<br>0    |                                                                          | <b>10</b> 0 <b>15</b> (OII) 6                                                     |
| 3-CO-17,17-F               | $\operatorname{Rn}(4)$                                                   | 6          | $3\beta, 12\beta, 15\alpha-(OH)_3$ 25<br>11 $\alpha$ 16 $\beta$ (OH) 15  | <b>12</b> β, <b>15</b> α-(OH) <sub>2</sub> 6<br>20 <b>11</b> - <b>16</b> α (OH) 8 |
| 5-00-17,17-12              | (Cd (4))                                                                 | 90         | <b>11</b> α, <b>16</b> β-(OH) <sub>2</sub> 15<br>n.i.                    | 3β, <b>11</b> α, <b>16</b> β-(OH) <sub>3</sub> 8                                  |
| 16-CO                      | $\begin{cases} \operatorname{Rn} & (6) \end{cases}$                      | 38         | <b>3</b> β, <b>7</b> α-(OH) <sub>2</sub> 48                              |                                                                                   |
| 10 00                      | Ao (6)                                                                   | 90         | n.i.                                                                     |                                                                                   |
|                            | (Cd (4))                                                                 | 33         | $6\alpha$ , <b>11</b> $\alpha$ -(OH) <sub>2</sub> 59                     | <b>6</b> -CO- <b>11</b> α- OH 10                                                  |
|                            | $\operatorname{Rn}(4)$                                                   | 46         | $3\beta,7\alpha-(OH)_2$ 24                                               | <b>3</b> -CO- <b>11</b> α- OH 16                                                  |
| 16-CO-3a-F                 | } (-)                                                                    | 10         | <b>3</b> -CO-7α-OH 21                                                    | <b>3</b> -CO- <b>6</b> α- OH 7                                                    |
|                            | Ao (4)                                                                   | 8          | 7β,11α-(OH) <sub>2</sub> 10                                              | $6\beta$ , $11\alpha$ -(OH) <sub>2</sub> 5                                        |
|                            |                                                                          |            | · [-)== ( ·)2                                                            | <b>11</b> α- OH 5                                                                 |
|                            | (Cd (4)                                                                  | 14         | $1\beta$ , $6\alpha$ -(OH) <sub>2</sub> 33                               | <b>1</b> -CO- <b>6</b> α- OH 4                                                    |
|                            | ( )                                                                      |            | <b>1</b> -CO- <b>6</b> α, <b>19</b> -(OH) <sub>2</sub> 8                 | $6\alpha,11\alpha$ -(OH) <sub>2</sub> 3                                           |
| 17-CO                      | Rn (4)                                                                   | 41         | <b>6</b> α, <b>11</b> α-(OH), 11                                         | $3\alpha$ , $11\alpha$ -(OH), 8                                                   |
|                            |                                                                          |            | 、 / <b>-</b>                                                             | <b>3</b> β, <b>7</b> β-(OH) <sub>2</sub> 7                                        |
|                            | (Ao (6)                                                                  | 67         | $7\beta$ , <b>11</b> $\alpha$ -(OH) <sub>2</sub> 34                      | <b>11</b> α- OH 4                                                                 |
|                            | (Cd (4))                                                                 | 12         | $1\beta,6\alpha$ -(OH) <sub>2</sub> 41                                   | $6\alpha, 11\alpha-(OH)_2$ 7                                                      |
|                            |                                                                          |            |                                                                          | $11\alpha, 15\alpha - (OH)_2$ 5                                                   |
|                            |                                                                          |            |                                                                          | $1\beta,15\alpha$ -(OH) <sub>2</sub> 4                                            |
| 17-CO-3α-F *               | ł.                                                                       |            |                                                                          | <b>12</b> β, <b>15</b> α-(OH) <sub>2</sub> 3                                      |
|                            | Rn (6)                                                                   | 32         | <b>3</b> -CO- <b>11</b> α- OH 12                                         | <b>3</b> β, <b>7</b> β-(OH) <sub>2</sub> 9                                        |
|                            |                                                                          |            | <b>3</b> β, <b>11</b> α-(OH) <sub>2</sub> 11                             | <b>3</b> -CO- <b>6</b> α- OH 5                                                    |
|                            | (Ao (4))                                                                 | 18         | $7\beta$ , <b>11</b> $\alpha$ -(OH) <sub>2</sub> 41                      | <b>11</b> $\alpha$ -(OH) 18                                                       |
|                            | $\int \operatorname{Rn} (6)$                                             | <b>28</b>  | $6\alpha$ , $11\alpha$ -(OH) <sub>2</sub> 24                             | $3\beta,7\beta$ -(OH) <sub>2</sub> 8                                              |
| 17-CO-3β-F *               | $\langle$                                                                |            | <b>3</b> -CO- <b>11</b> α- OH 12                                         | $11\alpha$ - OH 5                                                                 |
| •                          | A = (4)                                                                  | 10         |                                                                          | $3\beta$ , $11\alpha$ -(OH) <sub>2</sub> 4                                        |
|                            | (Ao (4))                                                                 | 18         | $7\beta,1]\alpha$ -(OH) <sub>2</sub> 40                                  | $11\alpha - OH 18$                                                                |
| 17 CO 2 2 E                | $\begin{cases} Cd & (4) \\ Rn & (4) \end{cases}$                         | 0<br>9     | $6\alpha, 11\alpha$ -(OH) <sub>2</sub> 30<br>$6\pi, 11\pi, (OH)$ 15      | $1\beta$ , $6\alpha$ -(OH) <sub>2</sub> 20                                        |
| 17-CO-3,3-F <sub>2</sub>   |                                                                          | 28         | $6\alpha, 11\alpha - (OH)_2$ 15                                          |                                                                                   |
| 17-CO-6α-F                 | (Ao (4)<br>Ao (6)                                                        | 28<br>67   | 11α- ΟΗ 45<br>11α- ΟΗ 54                                                 |                                                                                   |
| 17-00-04-1                 | $\int Cd (4)$                                                            | 47         | n.i.                                                                     |                                                                                   |
| 17-CO-6,6-F <sub>2</sub>   | $\begin{bmatrix} O \mathbf{d} & (4) \\ \mathbf{A} 0 & (6) \end{bmatrix}$ | 67         | n.i.                                                                     |                                                                                   |
| 17-CO-7,7-F <sub>2</sub>   | $\operatorname{Rn}(4)$                                                   | 0          | $3\alpha, 11\alpha$ -(OH) <sub>2</sub> 18                                | <b>4</b> α, <b>11</b> α-(OH) <sub>2</sub> 11                                      |
| 1,00,112                   | (Cd (4))                                                                 | 8          | $1\beta, 6\alpha - (OH)_2$ 22                                            | $7_{\beta}, 15_{\alpha}, 17_{\beta} - (OH)_{3} = 6$                               |
| 15 00 10 10 D              |                                                                          | v          | $1\beta, 6\alpha, 17\beta$ -(OH) <sub>3</sub> 20                         | -bizewitth (ortig                                                                 |
| 17-CO-12,12-F <sub>2</sub> | $\int Rn (4)$                                                            | 30         | n.i.                                                                     |                                                                                   |
|                            | $\begin{pmatrix}$                                                        | 63         | <b>7</b> β- OH 43                                                        |                                                                                   |
|                            |                                                                          |            | from rof 9                                                               |                                                                                   |

\* Results from ref. 2.

# TABLE 2

N.m.r. results, presented in the usual form,<sup>*a*</sup> were obtained using solutions in CDCl<sub>3</sub>. For <sup>1</sup>H signals (examined at 100 MHz) the  $\tau_2$ (calc.) values are based on earlier work.<sup>*b*</sup> For <sup>19</sup>F signals [examined at 84.6 MHz and assigned, where possible, to equatorial (eq) and axial (ax) substituents] the shifts are p.p.m. from external trifluoroacetic acid. All but three of the products (nos. 1055, 1068, and 1069) are, or have been chemically related to, fully characterised compounds (Table 3)

|                                                                          |                 | <sup>1</sup> H Signals ( $J$ or $w_1$ /Hz)  |                                             | als ( $J \text{ or } w_{\frac{1}{2}} / \text{Hz}$ )                                    | <sup>19</sup> F Signals ( $J$ or $w_{\frac{1}{2}}/\text{Hz}$ )                                                                                                                                                      |  |  |
|--------------------------------------------------------------------------|-----------------|---------------------------------------------|---------------------------------------------|----------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
| No. Compound                                                             |                 | τ <sub>2</sub> τ                            | (calc.)                                     |                                                                                        | <u></u>                                                                                                                                                                                                             |  |  |
| 1028 16,16-Difluoro-5a-androstane-                                       | 19              | 8.77                                        | 8.75                                        |                                                                                        | -3.8 m(42)                                                                                                                                                                                                          |  |  |
| 3,11-dione                                                               | 18              | 9.11                                        | 9.09                                        |                                                                                        |                                                                                                                                                                                                                     |  |  |
| 1029 12,12-Difluoro- $5\alpha$ -androstane-                              | $\frac{19}{18}$ | $\begin{array}{r} 8.92 \\ 8.94 \end{array}$ | 8.90                                        |                                                                                        |                                                                                                                                                                                                                     |  |  |
| 7,17-dione<br>1030 12,12-Difluoro-5α-androstane-                         | 19              | 8.86                                        | $\begin{array}{c} 8.94\\ 8.85\end{array}$   |                                                                                        |                                                                                                                                                                                                                     |  |  |
| 1,6,17-trione                                                            | 18              | 8.95                                        | 8.91                                        |                                                                                        |                                                                                                                                                                                                                     |  |  |
| 1031 16,16-Difluoro-5α-androstane-                                       | 19              | 8.63                                        | 8.59                                        |                                                                                        |                                                                                                                                                                                                                     |  |  |
| 3,7,12-trione<br>1032 7,7-Difluoro-5α-androstane-                        | $\frac{18}{19}$ | $8.77 \\ 8.71$                              | $8.67 \\ 8.69$                              |                                                                                        |                                                                                                                                                                                                                     |  |  |
| 3,11,17-trione                                                           | 18              | 9.13                                        | 9.10                                        |                                                                                        |                                                                                                                                                                                                                     |  |  |
| 1033 3α-Fluoro-5α-androstane-                                            | 19              | 8.99                                        | 9.00                                        | H-3 $\begin{cases} 4.80 \text{ m}(7) \\ 5.85 \text{ m}(7) \end{cases}$                 |                                                                                                                                                                                                                     |  |  |
| 6,11,16-trione                                                           | 18              | 9.13                                        | 9.15                                        | (5.35  m(7))                                                                           |                                                                                                                                                                                                                     |  |  |
| 1034 3α-Fluoro-5α-androstane-<br>7,11,16-trione                          | $\frac{19}{18}$ | $8.70 \\ 9.18$                              | $8.67 \\ 9.16$                              | 4.95 m(7)<br>5.45 m(7)                                                                 |                                                                                                                                                                                                                     |  |  |
| 1035 12,12-Difluoro- $5\alpha$ -androstane-                              | 19              | 8.83                                        | 8.88                                        | 0.10(1)                                                                                |                                                                                                                                                                                                                     |  |  |
| 7,15,17-trione                                                           | 18              | 8.83                                        | 8.86                                        |                                                                                        |                                                                                                                                                                                                                     |  |  |
| 1036 16,16-Difluoro-11α-hydroxy-                                         | $\frac{19}{18}$ | $\begin{array}{c} 8.85 \\ 9.04 \end{array}$ | 8.86                                        | H-11 6.00 sextet (10,10,5)                                                             |                                                                                                                                                                                                                     |  |  |
| 5α-androstan-3-one<br>1037 11α-Acetoxy-16,16-difluoro-                   | 19              | 8.87                                        | $\begin{array}{c} 9.03 \\ 8.89 \end{array}$ | H-11 4.77 sextet (10,10,5)                                                             |                                                                                                                                                                                                                     |  |  |
| 5α-androstan-3-one                                                       | 18              | 9.00                                        | 9.00                                        |                                                                                        |                                                                                                                                                                                                                     |  |  |
| 1038 3a-Fluoro-11a-hydroxy-                                              | 19              | 9.02                                        | 9.05                                        | H-3 $\begin{cases} 4.95 \text{ m} (7) \\ 5.45 \text{ m} (7) \end{cases}$               |                                                                                                                                                                                                                     |  |  |
| $5\alpha$ -androstan-16-one                                              | 18              | 9.10                                        | 9.11                                        | $\begin{array}{c} H-3 \\ H-11 \\ 6.00 \text{ sextet } (10,10,5) \end{array}$           |                                                                                                                                                                                                                     |  |  |
| 1039 12,12-Difluoro-7β-hydroxy-                                          | 19              | 9.16                                        | 9.14                                        | H-7 6.51 m (20)                                                                        | $\int -27.2 t(4) = \int -31.2 q(30.14)$                                                                                                                                                                             |  |  |
| 5α-androstan-17-one                                                      | 18              | 8.93                                        | 8.92                                        |                                                                                        | $\operatorname{eq} \left\{ \begin{array}{c} -27.2 \ t(4) \\ -30.0 \ t(4) \end{array} \right. \operatorname{ax} \left\{ \begin{array}{c} -31.2 \ q(30,14) \\ -34.0 \ q(30,14) \end{array} \right.$                   |  |  |
| 1040 7β-Acetoxy-12,12-difluoro-                                          | 19              | 9.14                                        | 9.13                                        | H-7 5.36 m (7)                                                                         |                                                                                                                                                                                                                     |  |  |
| 5α-androstan-17-one<br>1041 3.3-Difluoro-11α-hydroxy-                    | $\frac{18}{19}$ | $\begin{array}{c} 8.91 \\ 9.01 \end{array}$ | $\begin{array}{c} 8.92 \\ 9.04 \end{array}$ | H-11 6.03 sextet (10,10,5)                                                             | (-8.7  s)(-20.5  m)                                                                                                                                                                                                 |  |  |
| 5α-androstan-17-one                                                      | 18              | 9.04                                        | 9.10                                        |                                                                                        | $eq \left\{ \begin{array}{c} -8.7 \ s \\ -11.6 \ s \end{array}  ight. ax \left\{ \begin{array}{c} -20.5 \ m \\ -23.4 \ m \end{array}  ight.$                                                                        |  |  |
| 1042 6a-Fluoro-11a-hydroxy-                                              | 19              | 9.02                                        | 9.06                                        | H-6 $\begin{cases} 5.46 \text{ sextet } (10,10.5) \\ 5.90 \text{ m } (20) \end{cases}$ |                                                                                                                                                                                                                     |  |  |
| 5α-androstan-17-one                                                      | 18              | 9.12                                        | 9.10                                        | H-11 6.00 m (20)                                                                       |                                                                                                                                                                                                                     |  |  |
| 1043 17,17-Difluoro-16β-hydroxy-                                         | 19              | 8.76                                        | 8.74                                        | $5.67 \pm (7)$                                                                         |                                                                                                                                                                                                                     |  |  |
| 5α-androstane-3,11-dione                                                 | 18              | 9.13                                        | 8.88                                        | H-16 $\begin{cases} 5.67 \text{ t} (\dot{7}) \\ 5.86 \text{ t} (7) \end{cases}$        |                                                                                                                                                                                                                     |  |  |
| 1044 6a-Hydroxy-5a-androstane-                                           | 19              | 8.92                                        | 8.91                                        | H-6 6.60 sextet (10,10,5)                                                              |                                                                                                                                                                                                                     |  |  |
| 3,16-dione<br>1045 7α-Hydroxy-5α-androstane-                             | $\frac{18}{19}$ | $\begin{array}{c} 9.08 \\ 8.95 \end{array}$ | $\begin{array}{c} 9.10 \\ 8.94 \end{array}$ | H-7 6.15 m (7)                                                                         |                                                                                                                                                                                                                     |  |  |
| 3,16-dione                                                               | 18              | 9.09                                        | 9.09                                        |                                                                                        |                                                                                                                                                                                                                     |  |  |
| 1046 3a-Fluoro-11a-hydroxy-                                              | 19              | 9.09                                        | 9.10                                        | H-3 $\begin{cases} 4.82 \text{ m} (7) \\ 5.22 \text{ m} (7) \end{cases}$               |                                                                                                                                                                                                                     |  |  |
| 5α-androstane-6,16-dione                                                 | 18              | 9.07                                        | 9.07                                        | H-3 $15.32 \text{ m}$ (7)<br>H-11 5.91 sextet (10,10,5)                                |                                                                                                                                                                                                                     |  |  |
| 1047 3,3-Difluoro-1β,6α-hydroxy-                                         | 19              | 8.86                                        |                                             | H-1 $6.07 \neq (8,5)$                                                                  | (-5.0  s) (13.9 m                                                                                                                                                                                                   |  |  |
| 5α-androstan-17-one °                                                    | 18              | 9.15                                        |                                             | H-6 6.17 sextet (11,11,5)                                                              | $eq \begin{cases} -5.0 \text{ s} \\ -7.7 \text{ s} \end{cases} ax \begin{cases} 13.9 \text{ m} \\ 16.6 \text{ m} \end{cases}$                                                                                       |  |  |
| 1048 12,12-Difluoro-1β,6α-dihydroxy-                                     | 19              | 9.08                                        | 9.10                                        |                                                                                        |                                                                                                                                                                                                                     |  |  |
| 5α-androstan-17-one <sup>d</sup><br>1049 1β,6α-Diacetoxy-12,12-difluoro- | $\frac{18}{19}$ | $\begin{array}{c} 8.95 \\ 8.95 \end{array}$ | $\begin{array}{c} 8.95 \\ 8.99 \end{array}$ | H-1 5.42 q (10,5)                                                                      | $(-261\pm(8))$ $(-311\pm(19))$                                                                                                                                                                                      |  |  |
| $5\alpha$ -androstan-17-one                                              | 18              | 8.95                                        | 8.94                                        | H-6 5.20 sextet $(11,11,5)$                                                            | $\mathrm{eq} \left\{ egin{array}{c} -26.1 \mathrm{~t~(8)} \\ -30.0 \mathrm{~t~(8)} \end{array} \mathrm{~ax} \left\{ egin{array}{c} -31.1 \mathrm{~t~(19)} \\ -34.0 \mathrm{~t~(19)} \end{array}  ight.$             |  |  |
| 1050 12,12-Difluoro-1β,16β-                                              | 19              | 8.95                                        | 8.88                                        | H-1 6.46 q (10,5)                                                                      |                                                                                                                                                                                                                     |  |  |
| dihydroxy-5 <i>a</i> -androstan-3-                                       | 18              | 8.86                                        | 8.83                                        | H-16 5.58 m (18)                                                                       |                                                                                                                                                                                                                     |  |  |
| one<br>1051 7,7-Difluoro-3a,11a-dihydroxy-                               | 19              | 9.02                                        | 9.04                                        | H-3                                                                                    |                                                                                                                                                                                                                     |  |  |
| $5\alpha$ -androstan-17-one                                              | 18              | 9.11                                        | 9.08                                        | $ \begin{array}{c} \text{H-3} \\ \text{H-11} \end{array} $ 6.0 m (26)                  |                                                                                                                                                                                                                     |  |  |
| 1052 3α,11α-Diacetoxy-7,7-difluoro-                                      | 19              | 9.06                                        | 9.06                                        | H-3 4.9 m (23)                                                                         | $eq \left\{ {\begin{array}{*{20}c} -12.1 \ { m s}} \\ -15.0 \ { m s} \end{array}  ight. { m ax} \left\{ {\begin{array}{*{20}c} -33.5 \ { m m}} \\ -36.4 \ { m m} \end{array}  ight.$                                |  |  |
| 5α-androstan-17-one<br>1053 7,7-Difluoro-4α,11α-dihydroxy-               | $\frac{18}{19}$ | $\begin{array}{c} 9.02 \\ 9.01 \end{array}$ | $\begin{array}{c} 9.04 \\ 9.02 \end{array}$ | H-11 4.77 sextet (10,10,5)<br>H-4 6.58 m (19)                                          | -15.0  s $(-36.4  m)$                                                                                                                                                                                               |  |  |
| 5α-androstan-17-one                                                      | 18              | 9.11                                        | 9.09                                        | H-11 $6.04$ sextet (10,10,5)                                                           |                                                                                                                                                                                                                     |  |  |
| 1054 4a,11a-Diacetoxy-7,7-difluoro-                                      | 19              | 8.97                                        | 9.02                                        | H-4 5.32 sextet (11,11,5)                                                              | $eq \left\{ {\begin{array}{*{20}c} -12.3 \ { m s}} \\ -15.1 \ { m s} \end{array} { m ax} \left\{ {\begin{array}{*{20}c} -33.7 \ { m m}} \\ -36.6 \ { m m} \end{array}  ight.$                                       |  |  |
| 5α-androstan-17-one<br>1055 4α,16β-Diacetoxy-12,12-                      | $\frac{18}{19}$ | $\begin{array}{c} 9.06 \\ 8.89 \end{array}$ | $\begin{array}{c} 9.03 \\ 8.88 \end{array}$ | H-11 4.81 sextet (10,10,5)<br>H-4 4.09 d (10)                                          | (-15.1  s) = (-36.6  m)                                                                                                                                                                                             |  |  |
| difluoro-5α-androstan-3-one                                              | 18              | 8.94                                        | 8.90                                        | H-16 4.80 m (18)                                                                       | $\mathrm{eq} \left\{ egin{array}{c} -24.0 \ \mathrm{s} \\ -26.8 \ \mathrm{s} \end{array} \mathrm{ax} \left\{ egin{array}{c} -34.9 \ \mathrm{q} \ (32,16) \\ -38.7 \ \mathrm{q} \ (32,16) \end{array}  ight.  ight.$ |  |  |
| 1056 16,16-Difluoro-6β,11α-                                              | 19              | 8.39                                        |                                             |                                                                                        |                                                                                                                                                                                                                     |  |  |
| dihydroxy-5 <i>a</i> -androstan-3-                                       | 18              | 9.06                                        |                                             |                                                                                        |                                                                                                                                                                                                                     |  |  |
| one <sup>e,d</sup><br>1057 6β,11α-Diacetoxy-16,16-                       | 19              | 8.70                                        | 8.73                                        | H-6 5.10 m (7)                                                                         |                                                                                                                                                                                                                     |  |  |
| difluoro-5α-androstan-3-one                                              | 18              | 8.96                                        | 8.93                                        | H-11 $4.77$ sextet (10,10,5)                                                           |                                                                                                                                                                                                                     |  |  |
| 1058 3a-Fluoro-6a, 11a-dihydroxy-                                        | 19              | 9.01                                        | 9.02                                        | H-3 {4.85 m (7)                                                                        |                                                                                                                                                                                                                     |  |  |
| 5α-androstan-16-one                                                      | 18              | 9.12                                        | 9.09                                        | H-6 $(5.35 \text{ m} (7))$<br>H-6 $(6.63 \text{ sextet} (10, 10, 5))$                  |                                                                                                                                                                                                                     |  |  |
|                                                                          |                 |                                             |                                             | H-11 $6.01$ sextet (10,10,5)                                                           |                                                                                                                                                                                                                     |  |  |
|                                                                          |                 |                                             |                                             | - , -, -, -, -, -, -, -, -, -, -, -, -,                                                |                                                                                                                                                                                                                     |  |  |

<sup>1</sup>H Signals (J or  $w_{\frac{1}{2}}/\text{Hz}$ ) <sup>19</sup>F Signals (J or  $w_{i}/Hz$ ) No.  $\tau_2(\text{calc.})$ Compound  $\tau_2$ 1059 6a, 11a-Diacetoxy-3a-fluoro-19 8.98 9.06  $\begin{cases} 4.92 \text{ m (7)} \\ 5.42 \text{ m (7)} \end{cases}$ H-3 5a-androstan-16-one 18 9.059.05H-6 5.32 sextet (10,10,5) H-11 4.81 sextet (10,10,5) 1060 3,3-Difluoro-6a,11a-dihydroxy-6.57 sextet (11,11,5) 19 9.01 9.01H-6  $5\alpha$ -androstan-17-one 9.11 H-11 6.05 sextet (10,10,5) 18 9.12 1061 6a, 11a-Diacetoxy-3, 3-difluoro-19 8.98 9.05H-6 5.27 sextet (11,11,5)  $5\alpha$ -androstan-17-one 18 9.069.07 H-11 4.78 sextet (10,10,5) 1062 3a-Fluoro-6β,11a-dihydroxy-19 8.81 8.82  $\begin{cases} 4.82 \text{ m (7)} \\ 5.32 \text{ m (7)} \end{cases}$ H-39.05  $5\alpha$ -androstan-16-one 18 9.06 H-6 6.20 m (6) H-11 5.90 sextet (10,10,5) 1063 3a-Fluoro-7β,11a-dihydroxy-19 9.00  $5\alpha$ -androstan-17-one <sup>d</sup>, e 18 9.10 H-3  $\begin{cases} 4.96 \text{ m } (7) \\ 5.44 \text{ m } (7) \end{cases}$ 1064 7β,11α-Diacetoxy-3α-fluoro-19 9.019.04  $5\alpha$ -androstan-16-one 18 9.04 9.07 H-7 5.30 sextet (10,10,5) H-11 4.75 sextet (10,10,5) 1065 16,16-Difluoro-78,128- $\begin{array}{c} H-7 \\ H-12 \end{array}$  6.60 m (26) 8.93 8.94 19 dihydroxy-5a-androstan-3-18 9.048.98 one 1066 7β,15α-Diacetoxy-12,12-8.92 H-7 5.38 m (19) 19 8.91 H-15 4.97 m (16) difluoro-5a-androstan-3-one 18 8.98 8.97  $\begin{array}{c} H-11 \\ H-16 \end{array} \right\} 6.00 m (26)$ 1067 17,17-Difluoro-11α,16β-19 8.85 8.84  $\left\{ {\begin{array}{*{20}c} - 29.6 \ {\rm d} \ (19) \\ - 32.4 \ {\rm d} \ (19) \end{array}} \right.$  , eq ,  $\left\{ {\begin{array}{*{20}c} - 46.9 \ {\rm s} \\ - 49.7 \ {\rm s} \end{array}} \right.$ ' ax ' dihydroxy-5a-androstan-3-8.828.99 18 one 1068 7,7-Difluoro-12β,15α-19 8.91 8.92H-12 6.50 q (10,5) H-15 5.63 m (17) dihydroxy-5a-androstan-3-18 9.20 9.17 one H-12 5.30 q (10,5) 1069 12B, 15a-Diacetoxy-7, 7-difluoro-19 8.92 8.92  $5\alpha$ -androstan-3-one 9.119.10 H-15 4.79 m (17) 18 1070 17-Fluoro-12β, 15α-dihydroxy-H-12 6.10 q (10,5) 19 8.94 8.93  $5\alpha$ -androst-16-en-3-one 8.928.9218 H-15 5.42 t (8,8) H-16 5.00 m (5) H-1 5.45 q (10,5) H-6 5.25 sextet (11,11,5) 1071 1β,6α,17β-Triacetoxy-12,12-19 8.97 9.00 eq  $\begin{cases} -24.7 \text{ s} \\ -27.5 \text{ s} \end{cases}$  ax  $\begin{cases} -34.8 \text{ t} (19) \\ -37.6 \text{ t} (19) \end{cases}$ 9.00 9.03 difluoro-5*a*-androstane 18 H-17 4.73 q (10.8) 1072 16,16-Difluoro-5a-androstane-19 8.923β,7β,12β-triol e,d 18 9.10 $\begin{array}{c} H-3 \\ H-7 \\ H-12 \end{array} \right\} 5.40 \text{ m (27)}$ 1073 3β, 7β, 12β-Triacetoxy-16, 16-9.09 19 9.09 9.02difluoro- $5\alpha$ -androstane 18 9.00 $\begin{array}{c} H-3 \\ H-7 \\ H-7 \\ H-15 \\ H-3 \\ H-3 \\ 5.33 \\ m (25) \end{array} \right\} 5.35 m (22)$ eq  $\begin{cases} -28.2 \text{ s} \\ -31.0 \text{ s} \end{cases}$  ax  $\begin{cases} -35.4 \text{ q} (32,16) \\ -38.2 \text{ q} (32,16) \end{cases}$ 1074 3β,7β,15α-Triacetoxy-12,12-19 9.09 9.10 difluoro-5a-androstane 9.018.99 18 ' ax '  $\begin{cases} -27.6 \text{ d} (19) \\ -30.5 \text{ d} (19) \end{cases}$ ' eq '  $\begin{cases} -42.6 \text{ s} \\ -45.5 \text{ s} \end{cases}$ 1075 3β,11α,16β-Triacetoxy-17,17-19 9.059.07  $\begin{array}{c} H-11 \\ H-16 \end{array} \right\} 4.85 m (26)$ difluoro-5a-androstane 18 9.02 8.89 eq  $\begin{cases} -7.5 \text{ s} \\ -10.2 \text{ s} \end{cases}$  ax  $\begin{cases} -29.3 \text{ m} \\ -32.1 \text{ m} \end{cases}$ 1076 7,7-Difluoro-5a-androstane-19 911 9 13  $\begin{array}{c} H-3 \\ H-12 \end{array}$  6.5 m (25) 3β,12β,15α-triol 18 9.229.20H-15 5.65 m (18)  $\frac{\text{H-3}}{\text{H-12}} 5.3 \text{ m} (28)$ 1077 3β,12β,15α-Triacetoxy-7,7-19 9.10 9.11 eq  $\begin{cases} -11.3 \text{ s} \\ -14.2 \text{ s} \end{cases}$  ax  $\begin{cases} -28.3 \text{ m} \\ -31.2 \text{ m} \end{cases}$ difluoro- $5\alpha$ -androstane 18 9.129.12H-15 4.82 m (17) 1078 17-Fluoro-5a-androst-16-ene-19 8.68 33,123,15a-triol c,d 18 9.11 1079 3β,12β,15α-Triacetoxy-17-9.12 H-3 19 9.12 5.35 m (23) H-12 4.97 q (10,5) fluoro- $5\alpha$ -androst-16-ene 8.86 8.88 18 H-15 4.55 t (6,6) H-16 5.03 m (5) 1080 7β,15α,17β-Triacetoxy-12,12-9.06 9.13 19 H-7 5.54 m (20) difluoro- $5\alpha$ -androstane 18 8.96 8.94H-15 5.13 m (18) H-17 4.72 t (9)

TABLE 2 (Continued)

<sup>a</sup> Chemical shift and multiplicity; ref. 3b. <sup>b</sup> Ref. 6 (and earlier papers cited there). <sup>c</sup> Solution in  $C_5H_5N$ . <sup>d</sup> Dilute solution, only Me signals observed. <sup>e</sup> Solution in  $(CD_3)_2CO$ .

major product involves attack at  $C_x$  of a monofluoride  $(3\alpha$ -fluoro- $5\alpha$ -androstan-17-one with Rn) and one similar case (the  $3\beta$ -isomer with Rn) where a minor product is so formed. The corresponding gem-difluoride appears to retain its fluorine although the yield of the one product isolated was low. The sole example of  $C_y$  hydroxylation also occurs with Rn (in the incubation of the 17,17-

difluoro-3-ketone). It may be noted that the three exceptional cases result in substitution at the two appropriate standard sites (*viz.*, positions 3 and 11 with 17-ketones, and positions 11 and 16 with 3-ketones) and involve substrates whose keto-groups would be expected to exert strong directing effects towards  $Rn.^{4a}$  In the majority of cases, where neither  $C_x$  nor  $C_y$  is attacked, the

 TABLE 3

 Characterisation of new compounds

### Analytical figures (%)

|                                                                                                                       |                      | [α] <sub>D</sub> (°) <sup>b</sup> | Analytical                                                                  | Analytical figures (%)                       |                                            |  |
|-----------------------------------------------------------------------------------------------------------------------|----------------------|-----------------------------------|-----------------------------------------------------------------------------|----------------------------------------------|--------------------------------------------|--|
| Compound                                                                                                              | M.p. (°C) a          | (c)                               | <u></u>                                                                     | C                                            | Н                                          |  |
| 16,16-Difluoro-5α-androstane-3,11-dione                                                                               | 148-149              | +50<br>(0.1)                      | Found<br>C <sub>19</sub> H <sub>26</sub> F <sub>2</sub> O <sub>2</sub> req. | 69.8<br>70.3                                 | $\begin{array}{c} 7.95 \\ 8.1 \end{array}$ |  |
| $12,12$ -Difluoro- $5\alpha$ -androstane-7,17-dione                                                                   | 195 - 196            | +9                                | Found                                                                       | 70.3                                         | 8.1                                        |  |
| 12,12-Difluoro-5α-androstane-1,6,17-trione                                                                            | 245 - 247            | (0.3) + 173                       | C <sub>19</sub> H <sub>26</sub> F <sub>2</sub> O <sub>2</sub> req.<br>Found | $\begin{array}{c} 70.3 \\ 67.6 \end{array}$  | 8.1<br>7.0                                 |  |
|                                                                                                                       |                      | (0.4)                             | $C_{19}H_{24}F_{2}O_{3}$ req.                                               | 67.4                                         | 7.15                                       |  |
| 16,16-Difluoro-5α-androstane-3,7,12-trione                                                                            | 239 - 240            | 0<br>(0.1)                        | Found<br>C <sub>19</sub> H <sub>24</sub> F <sub>2</sub> O <sub>3</sub> req. | $\begin{array}{c} 67.6 \\ 67.4 \end{array}$  | $\begin{array}{c} 7.2 \\ 7.15 \end{array}$ |  |
| 7,7-Difluoro-5 $\alpha$ -androstane-3,11,17-trione                                                                    | 204 - 205            | +126<br>(0.3)                     | Found<br>C <sub>19</sub> H <sub>24</sub> F <sub>2</sub> O <sub>3</sub> req. | $\begin{array}{c} 67.5 \\ 67.4 \end{array}$  | 7.1<br>7.15                                |  |
| $3\alpha$ -Fluoro- $5\alpha$ -androstane-7,11,16-trione                                                               | 219 - 221            | -178                              | Found                                                                       | 71.1                                         | 7.8                                        |  |
| 11a-Acetoxy-16,16-difluoro-5a-androstan-3-one                                                                         | 190-192              | (0.1)<br>-10                      | C <sub>19</sub> H <sub>25</sub> FO <sub>3</sub> req.<br>Found               | $\begin{array}{c} 71.2 \\ 68.5 \end{array}$  | $\begin{array}{c} 7.9 \\ 8.3 \end{array}$  |  |
| 3α-Fluoro-11α-hydroxy-5α-androstan-16-one                                                                             | 211-212              | (0.4) - 186                       | C <sub>21</sub> H <sub>30</sub> F <sub>2</sub> O <sub>3</sub> req.<br>Found | $68.45 \\ 73.8$                              | 8.2<br>9.5                                 |  |
| 12,12-Difluoro-7β-hydroxy-5α-androstan-17-one                                                                         | 208-209              | (0.4) + 146                       | C <sub>19</sub> H <sub>29</sub> FO <sub>2</sub> req.<br>Found               | 74.0<br>70.2                                 | $9.5 \\ 8.7$                               |  |
|                                                                                                                       |                      | (0.4)                             | $C_{19}H_{28}F_{2}O_{2}$ req.                                               | 69.9                                         | 8.65                                       |  |
| 3,3-Difluoro-11α-hydroxy-5α-androstan-17-one                                                                          | 185-186              | +46<br>(0.4)                      | Found<br>C <sub>19</sub> H <sub>28</sub> F <sub>2</sub> O <sub>2</sub> req. | $\begin{array}{c} 70.05 \\ 69.9 \end{array}$ | $\begin{array}{c} 8.5\\ 8.65\end{array}$   |  |
| 6α-Fluoro-11α-hydroxy-5α-androstan-17-one                                                                             | 193 - 194            | +70<br>(0.6)                      | Found<br>C <sub>19</sub> H <sub>29</sub> FO <sub>2</sub> req.               | $74.1 \\ 74.0$                               | $9.45 \\ 9.5$                              |  |
| $17, 17\text{-} \text{Difluoro-16}\beta\text{-} \text{hydroxy-5}\alpha\text{-} \text{androstane-3, 11-} \text{dione}$ | 202 - 204            | +47                               | Found                                                                       | 67.0                                         | 7.7                                        |  |
| 6α-Hydroxy-5α-androstane-3,16-dione                                                                                   | 205 - 208            | (0.3) + 119                       | C <sub>19</sub> H <sub>26</sub> F <sub>2</sub> O <sub>3</sub> req.<br>Found | $67.0 \\ 74.8$                               | $7.7 \\ 9.15$                              |  |
| $7\alpha$ -Hydroxy- $5\alpha$ -androstane-3,16-dione                                                                  | 216-218              | (0.4) - 161                       | C <sub>19</sub> H <sub>28</sub> O <sub>3</sub> req.<br>Found                | $\begin{array}{c} 75.0 \\ 75.0 \end{array}$  | $\begin{array}{c} 9.3\\ 9.3\end{array}$    |  |
|                                                                                                                       |                      | (0.2)                             | $C_{19}H_{28}O_3$ req.                                                      | <b>75.0</b>                                  | 9.3                                        |  |
| 3α-Fluoro-11α-hydroxy-5α-androstane-6,16-dione                                                                        | 216 - 220            | -96<br>(0.4)                      | Found<br>C <sub>19</sub> H <sub>27</sub> FO <sub>3</sub> req.               | 70.7<br>70.8                                 | 8.4<br>8.4                                 |  |
| $3,3$ -Difluoro-1 $\beta,6\alpha$ -dihydroxy-5 $\alpha$ -androstan-17-one                                             | 268-269              | +71<br>(0.5)                      | Found<br>C <sub>19</sub> H <sub>28</sub> F <sub>2</sub> O <sub>3</sub> req. | $\begin{array}{c} 66.6 \\ 66.6 \end{array}$  | $\begin{array}{c} 8.2 \\ 8.2 \end{array}$  |  |
| 12,12-Difluoro-1β,6α-dihydroxy-5α-androstan-17-one                                                                    | 259-262              | ء 92 ف                            | Found                                                                       | 66.6<br>66.6                                 | 8.3                                        |  |
| 1β,6α-Diacetoxy-12,12-difluoro-5α-androstan-17-one                                                                    | 176-178              | (0.6) + 106                       | C <sub>19</sub> H <sub>28</sub> F <sub>2</sub> O <sub>3</sub> req.<br>Found | 65.0                                         | $8.2 \\ 7.5$                               |  |
| 12,12-Difluoro-1β,16β-dihydroxy-5α-androstan-3-one                                                                    | 249-251              | $^{(0.5)}_{+30}$ $^{\circ}$       | C <sub>23</sub> H <sub>32</sub> F <sub>2</sub> O <sub>5</sub> req.<br>Found | $\begin{array}{c} 64.8 \\ 66.6 \end{array}$  | $\begin{array}{c} 7.6 \\ 8.2 \end{array}$  |  |
| 7,7-Difluoro-3α,11α-dihydroxy-5α-androstan-17-one                                                                     | 189—191              | $\stackrel{(0.3)}{+56}$           | C <sub>19</sub> H <sub>28</sub> F <sub>2</sub> O <sub>3</sub> req.<br>Found |                                              | $\frac{8.2}{8.3}$                          |  |
|                                                                                                                       |                      | (0.2)                             | $C_{19}H_{28}F_2O_3$ req.                                                   | 66.6                                         | 8.2                                        |  |
| 4α,11α-Diacetoxy-7,7-difluoro-5α-androstan-17-one                                                                     | 193 - 195            | 0<br>(0.2)                        | Found<br>C <sub>23</sub> H <sub>32</sub> F <sub>2</sub> O <sub>5</sub> req. | $64.7 \\ 64.8$                               | $7.7 \\ 7.6$                               |  |
| $16,16$ -Difluoro- $6\beta,11\alpha$ -dihydroxy- $5\alpha$ -androstan-3-one                                           | 228 - 233            | . ,                               | Found<br>C <sub>19</sub> H <sub>28</sub> F <sub>2</sub> O <sub>3</sub> req. | $\begin{array}{c} 66.4 \\ 66.6 \end{array}$  | $\begin{array}{c} 8.1 \\ 8.2 \end{array}$  |  |
| 3a-Fluoro-6a,11a-dihydroxy-5a-androstan-16-one                                                                        | 213 - 215            | -150                              | Found                                                                       | 70.4                                         | 8.9                                        |  |
| 6α,11α-Diacetoxy-3α-fluoro-5α-androstan-16-one                                                                        | 163-164              | (0.5) - 115                       | C <sub>19</sub> H <sub>29</sub> FO <sub>3</sub> req.<br>Found               | $70.3 \\ 67.9$                               | 9.0<br>8.1                                 |  |
| 6α,11α-Diacetoxy-3,3-difluoro-5α-androstan-17-one                                                                     | 217-219              | $^{(0.5)}_{+50}$                  | C <sub>23</sub> H <sub>33</sub> FO <sub>5</sub> req.<br>Found               | $67.6 \\ 64.8$                               | $8.1 \\ 7.5$                               |  |
|                                                                                                                       |                      | (0.4)                             | $C_{23}H_{32}F_{2}O_{5}$ req.                                               | 64.8                                         | 7.6                                        |  |
| 3α-Fluoro-6β,11α-dihydroxy-5α-androstan-16-one                                                                        | 211-214              | -172<br>(0.4)                     | Found<br>C <sub>19</sub> H <sub>29</sub> FO <sub>3</sub> req.               | $70.15 \\ 70.3$                              | 9.0<br>9.0                                 |  |
| 3α-Fluoro-7β,11α-dihydroxy-5α-androstan-16-one                                                                        | 255 - 257            | -118<br>(0.1)                     | Found<br>C <sub>19</sub> H <sub>29</sub> FO <sub>3</sub> req.               | $70.35 \\ 70.3$                              | 9.1<br>9.0                                 |  |
| 7β,11α-Diacetoxy-3α-fluoro-5α-androstan-16-one                                                                        | 188—191              | -95                               | Found                                                                       | 67.7                                         | 8.1                                        |  |
| $16, 16\text{-}{\rm Diffuoro-7\beta}, 12\beta\text{-}{\rm dihydroxy-5}\alpha\text{-}{\rm androstan-3-one}$            | 247 - 249            | (0.6) + 48                        | C <sub>23</sub> H <sub>33</sub> FO <sub>5</sub> req.<br>Found               | $\begin{array}{c} 67.6 \\ 66.8 \end{array}$  | 8.1<br>8.1                                 |  |
| 7β,15α-Diacetoxy-12,12-difluoro-5α-androstan-3-one                                                                    | 165—167              | (0.05) + 116                      | C <sub>19</sub> H <sub>28</sub> F <sub>2</sub> O <sub>3</sub> req.<br>Found | $66.6 \\ 64.9$                               | $8.2 \\ 7.6$                               |  |
| 17,17-Difluoro-11α,16β-dihydroxy-5α-androstan-3-one                                                                   | 222-224              | (0.2) - 7                         | C <sub>23</sub> H <sub>32</sub> F <sub>2</sub> O <sub>5</sub> req.<br>Found | $\begin{array}{c} 64.8 \\ 66.4 \end{array}$  | $\begin{array}{c} 7.6 \\ 8.3 \end{array}$  |  |
| $17$ -Fluoro-12 $\beta$ , $15\alpha$ -dihydroxy- $5\alpha$ -androst-16-en-3-one                                       |                      | (0.5) + 110                       | C <sub>19</sub> H <sub>28</sub> F <sub>2</sub> O <sub>3</sub> req.<br>Found | 66.6                                         | 8.2                                        |  |
|                                                                                                                       | 175-177              | (0.2)                             | C <sub>19</sub> H <sub>27</sub> FO <sub>3</sub> req.                        | 70.8<br>70.8                                 | $\begin{array}{c} 8.4\\ 8.4\end{array}$    |  |
| $1\beta$ , $6\alpha$ , $17\beta$ -Triacetoxy-12, 12-difluoro- $5\alpha$ -androstane                                   | 237 - 238            | +61<br>(0.5)                      | Found<br>C <sub>25</sub> H <sub>36</sub> F <sub>2</sub> O <sub>6</sub> req. | $\begin{array}{c} 64.1 \\ 63.8 \end{array}$  | 7.5<br>7.7                                 |  |
| $16, 16$ -Difluoro- $5\alpha$ -androstane- $3\beta, 7\beta, 12\beta$ -triol                                           | 246 - 247            | ,                                 | Found $C_{19}H_{30}F_2O_3$ req.                                             | $\begin{array}{c} 66.2 \\ 66.25 \end{array}$ | 8.8<br>8.8                                 |  |
| 3β,11α,16β-Triacetoxy-17,17-difluoro-5α-androstane                                                                    | 127—128 °            | -10                               | Found                                                                       | 63.9                                         | 7.6                                        |  |
| 7,7-Difluoro-5 $\alpha$ -androstane-3 $\beta$ ,12 $\beta$ ,15 $\alpha$ -triol                                         | 223 - 225            | (0.4) + 13                        | C <sub>25</sub> H <sub>36</sub> F <sub>2</sub> O <sub>6</sub> req.<br>Found | $\begin{array}{c} 63.8\\ 66.0\end{array}$    | 7.7<br>8.8                                 |  |
| 3β,12β,15α-Triacetoxy-7,7-difluoro-5α-androstane                                                                      | 218—220 ª            | (0.1) + 3                         | C <sub>19</sub> H <sub>30</sub> F <sub>2</sub> O <sub>3</sub> req.<br>Found | $\begin{array}{c} 66.25 \\ 64.1 \end{array}$ | 8.8<br>7.8                                 |  |
| $17$ -Fluoro- $5\alpha$ -androst- $16$ -ene- $3\beta$ , $12\beta$ , $15\alpha$ -triol                                 | 273—275 <sup>f</sup> | (0.5)<br>+-97                     | $C_{25}H_{36}F_2O_6$ req.<br>Found                                          | 63.8<br>70.4                                 | 7.7<br>8.9                                 |  |
|                                                                                                                       |                      | (0.5)                             | $C_{19}H_{29}FO_3$ req.                                                     | 70.3                                         | 9.0                                        |  |
| 7β,15α,17β-Triacetoxy-12,12-difluoro-5α-androstane                                                                    | 156—157              | +66 (0.3)                         | Found<br>C <sub>25</sub> H <sub>36</sub> F <sub>2</sub> O <sub>6</sub> req. | $\begin{array}{c} 64.05 \\ 63.8 \end{array}$ | 7.7<br>7.7                                 |  |

<sup>a</sup> From Me<sub>2</sub>CO-light petroleum or Me<sub>3</sub>CO-hexane unless otherwise indicated. <sup>b</sup> CHCl<sub>3</sub> as solvent unless otherwise indicated. <sup>c</sup> EtOH as solvent. <sup>d</sup> MeOH as solvent. <sup>e</sup> From MeOH-H<sub>2</sub>O. f From EtOAc-MeOH. fluorine may act merely as a blocking group and thereby prevent hydroxylation at a standard site. Such blocking is more common with Ao than with the other microorganisms; its occurrence is illustrated by the contrast between the  $7\beta$ ,  $11\alpha$ -dihydroxylation of the parent 17ketone and the monohydroxylation of the  $6\alpha$ -fluoro-17ketone at the  $11\alpha$ -position by Ao. However, the more general outcome is that hydroxylation still occurs, but at an alternative site. For example, with Cd the  $12\beta$ ,  $15\alpha$ dihydroxylation mediated by a 3-keto-group is supplanted by  $7\beta-15\alpha$ -dihydroxylation in the 12,12-difluoro-3ketone and by  $7\beta$ -12 $\beta$ -dihydroxylation in the 16,16difluoro-3-ketone. A striking demonstration of this site shift is found with Ao which, although having a marked propensity for  $11\alpha$ -hydroxylation,<sup>5</sup> converts 12,12difluoro-5*a*-androstan-17-one into the 7β-hydroxy-derivative. (This result is the more surprising in that with standard substrates 6β- and 7α-hydroxylation is known to require the presence of 11a-hydroxy-compounds for inducing formation of the appropriate enzyme systems 7 and the monohydroxylated products are invariably the 11α-hydroxy-compounds.<sup>5</sup>)

(ii) The standard sites correspond to centres, depicted as  $C_z$ , more distant from the fluorine substituent(s) than  $C_x$  and  $C_y$ . In these cases the effects of the fluorine substituents should be small provided that hydroxylation of the parent ketones and the fluoro-ketones involves the same enzyme systems acting by broadly similar mechanisms. Examination of the results with all three micro-organisms shows that the introduction of remote fluorines leaves the basic hydroxylation patterns<sup>3-5</sup> unchanged. For example, the 7,7-difluoroand the 17-fluoro-3-ketones undergo 128,15a-dihydroxylation with Cd. The predilection of Ao for  $11\alpha$ -hydroxylation<sup>5</sup> is seen to apply also to the fluoro-ketones, and the extent of hydroxylation with these substrates illustrates a general tendency adumbrated in previous work,<sup>2</sup> viz.,

that the presence of remote fluorine generally facilitates hydroxylation. Thus, while the parent ketones are largely unaffected by *Ao* under the conditions used here, several of the fluorinated substrates (e.g. 3.3-difluoro- $5\alpha$ androstan-17-one) give the 11a-hydroxy-derivatives cleanly and in yields which are satisfactory for preparative work. These results, together with the convenient routes to a range of steroidal fluoro-ketones,<sup>6</sup> suggest that a sequence of chemical and microbiological stages may provide an efficient means of converting simple steroidal ketones into polyoxygenated fluoro-steroids.

We thank the S.R.C. for a studentship (to T. G. C. B.) and Glaxo Research Ltd. for a grant and gifts of chemicals.

[9/976 Received, 21st June, 1979]

REFERENCES

<sup>1</sup> Part 22, Sir Ewart R. H. Jones, G. D. Meakins, J. O. Miners,

<sup>1</sup> Part 22, Sir Ewart R. H. Jones, G. D. Meakins, J. O. Miners, R. N. Mirrington, and A. L. Wilkins, J.C.S. Perkin I, 1976, 1842.
<sup>2</sup> Sir Ewart R. H. Jones, G. D. Meakins, J. O. Miners, and A. L. Wilkins, J.C.S. Perkin I, 1975, 2308.
<sup>3</sup> (a) A. M. Bell, P. C. Cherry, I. M. Clark, W. A. Denny, Sir Ewart R. H. Jones, G. D. Meakins, and P. D. Woodgate, J.C.S. Perkin I, 1972, 2081; (b) A. M. Bell, W. A. Denny, Sir Ewart R. H. Jones, G. D. Meakins, and W. E. Müller, J.C.S. Perkin I, 1972, 2759; (c) V. E. Chambers, Sir Ewart R. H. Jones, G. D. Meakins, J. O. Miners, J. T. Pinhey, and A. L. Wilkins, J.C.S. Perkin I, 1975, 1359.
<sup>4</sup> (a) I. W. Browne, W. A. Denny, Sir Ewart R. H. Jones.

<sup>4</sup> (a) J. W. Browne, W. A. Denny, Sir Ewart R. H. Jones, G. D. Meakins, Y. Morisawa, A. Pendlebury, and J. Pragnell, J.C.S. Perkin I, 1973, 1493; (b) V. E. Chambers, W. A. Denny, J. M. Evans, Sir Ewart R. H. Jones, A. Kasal, G. D. Meakins, and J. Pragnell, J.C.S. Perkin I, 1973, 1500.

<sup>5</sup> (a) A. M. Bell, J. W. Browne, W. A. Denny, Sir Ewart R. H. Jones, A. Kasal, and G. D. Meakins, J.C.S. Perkin I, 1972, 2930; (b) A. S. Clegg, W. A. Denny, Sir Ewart R. H. Jones, G. D. Meakins, and J. T. Pinhey, J.C.S. Perkin I, 1973, 2137.
 <sup>6</sup> T. G. C. Bird, G. Felsky, P. M. Fredericks, Sir Ewart R. H. Jones, and G. D. Meakins, J. Chem. Research, 1979 (S) 388; (M)

4728. <sup>7</sup> M. Shibahara, J. A. Moody, and L. L. Smith, *Biochim. Biophys. Acta*, 1970, **202**, 172; L. Tan and P. Falardeau, J

J. W. Blunt, I. M. Clark, J. M. Evans, Sir Ewart R. H. Jones, G. D. Meakins, and J. T. Pinhey, J. Chem. Soc. (C), 1971, 1136.